首页 | 本学科首页   官方微博 | 高级检索  
     

欠定条件下弱稀疏源信号混合矩阵盲估计
引用本文:李宁 陈海庭. 欠定条件下弱稀疏源信号混合矩阵盲估计[J]. 数据采集与处理, 2015, 30(4): 793-801
作者姓名:李宁 陈海庭
作者单位:武汉科技大学机械自动化学院
摘    要:针对源信号的稀疏性影响欠定混合矩阵的估计精度,在源信号单源频率及非单源频率分量分析的基础上,通过对观测信号频率峰值的幅值比值所构成的列向量聚类,提出欠定条件下弱稀疏源信号混合矩阵的盲估计方法。鉴于经典聚类算法的局部收敛性带来聚类结果的不稳定性,采用全局收敛特性较好的遗传模拟退火聚类算法提高聚类结果的鲁棒性。仿真实验表明,本文提出的混合矩阵估计方法及采用的聚类算法在不同欠定条件及噪声环境下具有较强的估计性能。

关 键 词:欠定盲信号分离;弱稀疏信号;混合矩阵盲估计;遗传模拟退火聚类算法

Blind Estimation of Mixing Matrix for Little Sparse Sources in Underdetermined Mixtures
Li Ning,Chen Haiting. Blind Estimation of Mixing Matrix for Little Sparse Sources in Underdetermined Mixtures[J]. Journal of Data Acquisition & Processing, 2015, 30(4): 793-801
Authors:Li Ning  Chen Haiting
Affiliation:School of Machinery and Automation, Wuhan University of Science and Technology
Abstract:The estimation accuracy of the mixing matrix is influenced by the sources sparsity in the underdetermined mixtures. Based on the analytical results of the single and non single frequencies for source signals, through clustering the column vectors composed by the ratios between the observation signal frequency amplitudes, a new method for the mixing matrix estimation is proposed when the sources are little sparse to each other. Considering the non stability brought by the partial convergence of the classical clustering algorithm, the genetic and simulated annealing clustering algorithm possessing the global convergence characteristic is used to prove the robustness of the clustering result. The experiment results show that the proposed estimation method and the clustering algorithm can provide good estimation performance under different underdetermined conditions and different noises.
Keywords:underdetermined blind signal separation   little sparse signals   mixing matrix blind estimation   genetic and simulated annealing clustering algorithm
本文献已被 万方数据 等数据库收录!
点击此处可从《数据采集与处理》浏览原始摘要信息
点击此处可从《数据采集与处理》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号