首页 | 本学科首页   官方微博 | 高级检索  
     

一阶线性常系数微分方程组初值问题的留数解法
引用本文:段文喜. 一阶线性常系数微分方程组初值问题的留数解法[J]. 湖南工业大学学报, 2013, 27(4): 1-4
作者姓名:段文喜
作者单位:北京师范大学珠海分校 应用数学学院
摘    要:通过拉普拉斯变换,把一阶线性常系数微分方程组化为代数方程组,再求出代数方程组的解,此代数方程组的解是含有孤立奇点的复变函数,这些孤立奇点实际上是系数矩阵的特征根。对代数方程组的解与指数函数的乘积施行拉普拉斯逆变换,就得到原微分方程组的解。

关 键 词:一阶线性常系数微分方程组;初值问题;留数解法
收稿时间:2013-05-26

Residue Solution to Initial Value Problems of First Order LinearConstant Coefficient Differential Equations
Duan Wenxi. Residue Solution to Initial Value Problems of First Order LinearConstant Coefficient Differential Equations[J]. Journal of Hnnnan University of Technology, 2013, 27(4): 1-4
Authors:Duan Wenxi
Affiliation:School of Applied Mathematics, Beijing Normal University Zhuahi Campus
Abstract:By Laplasse transform, first order linear constant coefficient differential equations are transformed into algebraic equations, and the solutions to the algebraic equations are found out. The solutions of the algebraic equations are complex functions with isolated singularities, and these isolated singularities are actually the characteristic roots of coefficient matrix. By performing inverse Laplasse transformation on the solutions of algebraic equations and the product of exponential function, obtains the solutions of the original differential equations.
Keywords:
点击此处可从《湖南工业大学学报》浏览原始摘要信息
点击此处可从《湖南工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号