首页 | 本学科首页   官方微博 | 高级检索  
     


Interaction of peroxynitrite with mitochondrial cytochrome oxidase. Catalytic production of nitric oxide and irreversible inhibition of enzyme activity
Authors:MA Sharpe  CE Cooper
Affiliation:Department of Biological Sciences, Central Campus, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom.
Abstract:Purified mitochondrial cytochrome c oxidase catalyzes the conversion of peroxynitrite to nitric oxide (NO). This reaction is cyanide-sensitive, indicating that the binuclear heme a3/CuB center is the catalytic site. NO production causes a reversible inhibition of turnover, characterized by formation of the cytochrome a3 nitrosyl complex. In addition, peroxynitrite causes irreversible inhibition of cytochrome oxidase, characterized by a decreased Vmax and a raised Km for oxygen. Under these conditions, the redox state of cytochrome a is elevated, indicating inhibition of electron transfer and/or oxygen reduction reactions subsequent to this center. The lipid bilayer is no barrier to these peroxynitrite effects, as NO production and irreversible enzyme inhibition were also observed in cytochrome oxidase proteoliposomes. Addition of 50 microM peroxynitrite to 10 microM fully oxidized enzyme induced spectral changes characteristic of the formation of ferryl cytochrome a3, partial reduction of cytochrome a, and irreversible damage to the CuA site. Higher concentrations of peroxynitrite (250 microM) cause heme degradation. In the fully reduced enzyme, peroxynitrite causes a red shift in the optical spectrum of both cytochromes a and a3, resulting in a symmetrical peak in the visible region. Therefore, peroxynitrite can both modify and degrade the metal centers of cytochrome oxidase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号