首页 | 本学科首页   官方微博 | 高级检索  
     

基于GARCH误差校正的遗传支持向量机日前电价预测
引用本文:刘达,牛东晓,邢棉,聂巧平. 基于GARCH误差校正的遗传支持向量机日前电价预测[J]. 电力系统自动化, 2007, 31(11): 31-34
作者姓名:刘达  牛东晓  邢棉  聂巧平
作者单位:华北电力大学工商管理学院,北京市,102206;华北电力大学数理学院,河北省保定市,071003;南开大学经济学院,天津市,300071
摘    要:针对时间序列预测和智能算法预测各自的侧重点不同,结合两者优点对日前市场电价进行预测。首先建立支持向量机(SVM)模型对单一时点电价进行预测,将遗传算法(GA)嵌入SVM模型中来保证SVM参数选择最优。针对SVM-GA模型训练误差和测试误差存在一定的相关性和条件异方差性,采用广义自回归条件异方差(GARCH)模型对误差序列进行拟合。然后利用拟合好的GARCH模型对SVM-GA模型预测误差进行预测,最后根据GARCH预测结果对SVM-GA模型预测进行校正。用该方法对美国PJM电力市场2005年8月份日前电价进行连续预测,总体平均误差仅8.19%,比普通方法误差减少了将近4个百分点。

关 键 词:电力市场  电价预测  支持向量机  遗传算法  GARCH模型
收稿时间:2006-10-30
修稿时间:2007-05-18

Day-ahead Price Forecast with Genetic-algorithm-optimized Support Vector Machines Based on GARCH Error Calibration
LIU D,NIU Dongxiao,XING Mian,NIE Qiaoping. Day-ahead Price Forecast with Genetic-algorithm-optimized Support Vector Machines Based on GARCH Error Calibration[J]. Automation of Electric Power Systems, 2007, 31(11): 31-34
Authors:LIU D  NIU Dongxiao  XING Mian  NIE Qiaoping
Affiliation:1. North China Electric Power University, Beijing 102206, China;2. North China Electric Power University, Baoding 071003, China;3. Nankai University, Tianjin 300071, China
Abstract:A new method incorporating the time sequence modeling and intelligent algorithm modeling is presented to forecast the day-ahead electricity price.With genetic algorithm(GA)adopted to optimize the model's parameters,support vector machines(SVM)model is applied to forecast the price sequence.The generalized autoregressive conditional heteroscedasticity(GARCH)models are applied to adjust the error series of price forecasted by SVM-GA models,eliminating their autocorrelations and heteroscedasticity effects.A case of forecasting the day-ahead price of PJM market in August,2005 demonstrates the proposed method has a desirable performance with an overall mean absolute percentage error(MAPE)of 8.19 percent,which is nearly 4 percent less than data forecasted by common methods.
Keywords:electricity market   electricity price forecast   SVM   genetic algorithm   GARCH model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电力系统自动化》浏览原始摘要信息
点击此处可从《电力系统自动化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号