首页 | 本学科首页   官方微博 | 高级检索  
     


p-Type Bismuth Telluride-Based Composite Thermoelectric Materials Produced by Mechanical Alloying and Hot Extrusion
Authors:M K Keshavarz  D Vasilevskiy  RA Masut  S Turenne
Affiliation:1. école Polytechnique de Montréal, C.P. 6079, Succ. Centre-Ville, Montreal, QC, H3C 3A7, Canada
Abstract:We produced six different composites of p-type bismuth antimony telluride alloys and studied their structure and thermoelectric properties. The components of the composites were obtained in powder form by mechanical alloying. Mixed powders of two different compositions were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as revealed by scanning electron microscopy shows a 50% reduction compared with the conventional (Bi0.2Sb0.8)2Te3. X-ray diffraction (XRD) analysis only shows peak broadening with no clear indication of separate phases, and indicates a systematic decrease of crystallite size in the composite materials. Scattering mechanisms of charge carriers were evaluated by Hall-effect measurements. The thermoelectric properties were investigated via the Harman method from 300 K up to 460 K. The composites show no significant degradation of the power factor and high peak ZT values ranging from 0.86 to 1.04. The thermal conductivity of the composites slightly increases with respect to the conventional alloy. This unexpected behavior can be attributed to two factors: (1) the composites do not yet contain a significant number of grains whose sizes are sufficiently small to increase phonon scattering, and (2) each of the combined components of the composites corresponds to a phase with thermal conductivity higher than the minimum value corresponding to the (Bi0.2Sb0.8)2Te3 alloy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号