首页 | 本学科首页   官方微博 | 高级检索  
     

逆变点焊电源模糊神经网络自适应控制模型研究
引用本文:张勇 秦启书 蔡永青 谢红霞 杨思乾 刘金合. 逆变点焊电源模糊神经网络自适应控制模型研究[J]. 机械科学与技术, 2005, 24(8): 902-905
作者姓名:张勇 秦启书 蔡永青 谢红霞 杨思乾 刘金合
作者单位:[1]西北工业大学材料学院,西安710072 [2]河南工业职业技术学院,南阳473009
摘    要:研究了逆变点焊电源恒流自适应控制的模糊神经网络模型,设计了模糊神经网络结构。利用BP算法,采用先正弦函数输入后恒定输入的方法对网络进行了分段训练,并使用MATLAB语言,对系统进行了自适应控制和比例因子影响的仿真分析。结果表明,逆变点焊电源恒流自适应控制模糊神经网络,能够实现在线调整隶属函数参数,控制系统可快速感知外来干扰和过程变化,平均控制相对误差小于2.08%;比例因子的选取,对系统有很大影响,不同的比例因子在与训练好的网络结合进行控制时,系统控制效果不同。

关 键 词:逆变点焊  模糊神经网络  控制模型
文章编号:1003-8728(2005)08-0902-04
收稿时间:2005-01-12
修稿时间:2005-01-12

Study of Fuzzy Neural Network Self-Adaptive Control Model for Spot Welding Inverter
Zhang Yong;Qin QiShu;Cai YongQing;Xie GongXia;Yang SaiQian;Liu JinGe. Study of Fuzzy Neural Network Self-Adaptive Control Model for Spot Welding Inverter[J]. Mechanical Science and Technology for Aerospace Engineering, 2005, 24(8): 902-905
Authors:Zhang Yong  Qin QiShu  Cai YongQing  Xie GongXia  Yang SaiQian  Liu JinGe
Abstract:In this paper, a fuzzy neural network model for the constant current self-adaptive control system of a spot welding inverter is studied, and the fuzzy neural network architecture is built. The network is trained step by step by using back propagation learning algorithm, the first input is a sinusoidal function and the later one is a constant. The self adaptive control of the system and the effect of the scale factors on the system are simulated and analyzed by using the MATLAB. The results show that the constant current self-adaptive fuzzy neural network control system of the spot welding inverter can adjust the membership function parameters on-line in accordance with the disturbances and process variations, the average control error is less than 2.08%. The scale factors have a great influence on the control system, and the trained network working with different factors has different control effect.
Keywords:Spot welding inverter   Fuzzy neural network   Control model
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号