首页 | 本学科首页   官方微博 | 高级检索  
     


Thickness improvement in single point incremental forming deduced by sequential limit analysis
Authors:M J Mirnia  B Mollaei Dariani  H Vanhove  J R Duflou
Affiliation:1. Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
2. Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
Abstract:Multistage forming is one of the most practical solutions to avoid severe thinning in single point incremental forming (SPIF). A successful implementation of multistage SPIF is strongly dependent on an appropriate deformation path. In this paper, firstly, a simplified modeling technique is proposed using sequential limit analysis. It is shown that sequential limit analysis can predict the thickness distribution faster than an equivalent model in a commercial finite element modeling code like Abaqus can. The reliability of the model is assessed by comparing experimental and simulated results for single-stage and multistage SPIF cones. This model is utilized to study the effect of various deformation paths on the thickness distribution. As a result, a new multistage strategy is designed and implemented to form a 70° wall angle cone in three stages. The thickness distribution of the cone is improved significantly compared to cones formed by a single-stage and a conventional three-stage strategy. Besides this improvement, the new multistage SPIF can be carried out in much less time.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号