首页 | 本学科首页   官方微博 | 高级检索  
     

均分式L1/2正则化稀疏表示特征选择方法
引用本文:张笑朋,降爱莲. 均分式L1/2正则化稀疏表示特征选择方法[J]. 计算机工程与设计, 2019, 40(6): 1621-1625
作者姓名:张笑朋  降爱莲
作者单位:太原理工大学计算机科学与技术学院,山西晋中,030600;太原理工大学计算机科学与技术学院,山西晋中,030600
基金项目:山西省回国留学人员科研基金项目
摘    要:针对高维数据中出现的特征冗余问题,提出一种均分式L1/2正则化稀疏表示特征选择方法。根据特征数将高维数据集平均分成若干份,使用阈值迭代算法对每个特征子集进行L1/2正则化特征选择计算,聚合经过滤的数据集,运行L1/2正则化特征选择算法。该特征选择方法能够选择出更具代表性的特征,减少时间开销。实验结果表明,该方法适用于高维数据和低维数据。

关 键 词:稀疏表示  L1/2正则化  特征选择  均分式L1/2正则化  高维

Equational L1/2 regularization sparse representation feature selection
ZHANG Xiao-peng,JIANG Ai-lian. Equational L1/2 regularization sparse representation feature selection[J]. Computer Engineering and Design, 2019, 40(6): 1621-1625
Authors:ZHANG Xiao-peng  JIANG Ai-lian
Affiliation:(School of Computer Science and Technology,Taiyuan University of Technology,Jinzhong 030600,China)
Abstract:Aiming at the problem of feature redundancy in high-dimensional data, equational L1/2 regularization sparse representation feature selection was proposed. High-dimensional data sets were divided into several parts averagely according to the feature number, and selecting feature with L1/2 regularization was implemented using iterative half thresholding algorithm for each part, the filtered data set was aggregated and selecting feature with L1/2 regularization was implemented. This feature selection method can select more representative features and reduce the time cost. Experimental results show that the equational L1/2 regularization feature selection method is suitable for both high dimensional data and low dimensional data.
Keywords:sparse representation  L1/2 regularization  feature selection  equational L1/2 regularization  high dimension
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号