首页 | 本学科首页   官方微博 | 高级检索  
     

基于嵌入式平台双目测量的CUDA优化
引用本文:尚裕之,韩军,陈方杰,王祖武. 基于嵌入式平台双目测量的CUDA优化[J]. 计算机工程与设计, 2019, 40(3): 667-671
作者姓名:尚裕之  韩军  陈方杰  王祖武
作者单位:上海大学 通信与信息工程学院,上海,200444;上海大学 通信与信息工程学院,上海,200444;上海大学 通信与信息工程学院,上海,200444;上海大学 通信与信息工程学院,上海,200444
摘    要:为提高双目测量算法运算的速度,提出一种包括减少搬移、增大并行度和异步工作的方法来进行优化。基于快速双边滤波算法(fast bilateral stereo matching),它的匹配精度接近于全局匹配算法。对于标准测试样本,实现的方法在NVDIA TX1开发板上计算得到视差图所需要的时间更短,相比原来的CPU计算方法,代价聚合的效率有80倍的提升。实时双目测量方法为在嵌入式平台获取高质量双目视觉深度信息提供了有效、可靠的途径。

关 键 词:无人机  实时性  双目测量  统一计算设备架构  并行编程

CUDA optimization method of binocular measurement on embedded platform
SHANG Yu-zhi,HAN Jun,CHEN Fang-jie,WANG Zu-wu. CUDA optimization method of binocular measurement on embedded platform[J]. Computer Engineering and Design, 2019, 40(3): 667-671
Authors:SHANG Yu-zhi  HAN Jun  CHEN Fang-jie  WANG Zu-wu
Affiliation:(School of Communication and Information Engineering,Shanghai University,Shanghai 200444,China)
Abstract:To accelerate the speed of binocular measurement algorithm, an optimized method was proposed, including reducing movement, strengthening parallelism and working asynchronously. It was based on fast bilateral stereo matching, a local algorithm whose matching accuracy was compared to that of the global matching algorithm. For standard test sets, the proposed method was implemented on NVIDIA TX1, which cost less time to get the disparity map. Compared with the original CPU implementation, the efficiency of cost aggregation is improved by 80 times. The real-time binocular measurement method provides an effective and reliable way to obtain high-quality binocular vision depth information on embedded platforms.
Keywords:UAV  real-time  binocular measurement  CUDA  parallel programming
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号