首页 | 本学科首页   官方微博 | 高级检索  
     


Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells
Authors:Ananta Kumar MishraSaswata Bose  Tapas KuilaNam Hoon Kim  Joong Hee Lee
Affiliation:a BIN Fusion Research Team, Department of Polymer & Nano Engineering, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
b Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
c Department of Hydrogen and Fuel Cell Engineering, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
Abstract:Proton-exchange membrane fuel cells have emerged as a promising emission free technology to fulfill the existing power requirements of the 21st century. Nafion® is the most widely accepted and commercialized membrane to date and possesses excellent electrochemical properties below 80 °C, under highly humidified conditions. However, a decrease in the proton conductivity of Nafion® above 80 °C and lower humidity along with high membrane cost has prompted the development of new membranes and techniques. Addition of inorganic fillers, especially silicate-based nanomaterials, to the polymer membrane was utilized to partially overcome the aforementioned limitations. This is because of the lower cost, easy availability, high hydrophilicity and higher thermal stability of the inorganic silicates. Addition of silicates to the polymer membrane has also improved the mechanical, thermal and barrier properties, along with water uptake of the composite membranes, resulting in superior performance at higher temperature compared to that of the virgin membrane. However, the degrees of dispersion and interaction between the organic polymer and inorganic silicates play vital roles in improving the key properties of the membranes. Hence, different techniques and solvent media were used to improve the degrees of nanofiller dispersion and the physico-chemical properties of the membranes. This review focuses mainly on the techniques of silicate-based nanocomposite fabrication and the resulting impact on the membrane properties.
Keywords:AIBN  2  2&prime  -azobis(isobutyronitrile)  AMPS  2-acrylamido-2-methyl-1-propane sulfonic acid  APTES  3-aminopropyltriethoxysilane  BIS  benzimidazole-sulfonic acid polysiloxane  Boltorn  hyperbranched aliphatic Polyester BoltornTM H20  CIM  conventional impregnation method  CTAB  cetyltrimethyl ammonium bromide  DMA  dynamic mechanical analysis  DMAc  dimethyl acetamide  DMDOC  dimethyl dioctadecylammonium chloride  DMF  dimethyl formamide  DMSO  dimethyl sulfoxide  DOE  Department of Energy  DPTS  diethyl phosphonatoethyltriethoxysilane  DS  degree of sulfonation  EB  elongation at break  [EIm][TfO]  N-ethylimidazolium trifluoro methanesulfonate  GPTMS  glycidoxy-propyltrimethoxysilane  HCl  hydrochloric acid  HEMA  2-hydroxyethyl methacrylate  HNO3  nitric acid  HPMC  hydroxypropyl methyl cellulose  HPW  phosphotungstic acid  HTPEMFC  high temperature polymer electrolyte membrane fuel cell  IPA  isopropyl alcohol  LTPEMFC  low temperature polymer electrolyte membrane fuel cell  MCM  crystalline mesoporous silica  MEA  membrane electrode assembly  MMT  Montmorillonite  MPS  3-methacryloxypropyl trimethoxysilane  MPTMS  3-mercaptopropyl-trimethoxysilane  NaOH  sodium hydroxide  NMP  N-methyl-2-pyrrolidone  NMR  nuclear magnetic resonance  P123  Pluronic P123  PA  phosphoric acid  PAA  poly(acrylic acid)  PAM  polyamide  PBI  polybenzimidazole  PDMS  polydimethyl siloxane  PEEK  polyether ether ketone  PEG  polyethyleneglycol  PEI  polyether imide  PEM  polymer electrolyte membrane  PEMFC  polymer electrolyte membrane fuel cell  PEO  polyethylene oxide  PFSA  perflurosulfonic acid  phr  parts per hundred  PI  polyimide  PIL  protic ionic liquid  POSS  polyhedral oligomeric silsesquioxane  PPA  polyphosphoric acid  PPO  polyphenyloxide  PS  polystyrene  PSEBS  polystyrene ethylene butylene polystyrene  PTFE  polytetrafluoroethylene  PVDF  polyvinylidene fluoride  PVDF-HFP  poly(vinylidene fluoride-co-hexafluoropropylene)  PVOH  poly(vinyl alcohol)  PWA  tungstophosphoric acid  RH  relative humidity  SA  sulfanilic acid  SAN  poly(styrene-co-acrylonitrile)  SAXS  small angle X-ray scattering  SBA-15  amorphous mesoporous silica  SDF  sulfonated decafluorobiphenyl  SiO2-Im  silica containing imidazole group  SiPANPs  silicon-containing polyacrylate nanoparticles  SPAES  sulfonated polyarylene ether sulfone  SPEEK  sulfonated polyether ether ketone  SPOSS  sulfonated polyhedral oligomeric silsesquioxane  SPPO  sulfonated polyphenyloxide  SPSU  sulfonated polysulfone  SPSEBS  sulfonated polystyrene ethylene butylene polystyrene  SPSU-BP  sulfonated poly(biphenyl ether sulfone)  STY  styrene  TBS  Zonyl®   TBS  TEOS  tetraethylorthosilicate  Tg  glass transition temperature  THF  tetrahydrofurane  TP  poly(vinylidenefluoride-ter-perfluoro(4-methyl-3  6-dioxaoct-7-ene sulfonyl fluoride)-ter-vinyltriethoxysilane)  TS  tensile strength  VIM  vacuum-assisted impregnation method
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号