首页 | 本学科首页   官方微博 | 高级检索  
     


ATRP in the design of functional materials for biomedical applications
Authors:Daniel J Siegwart  Jung Kwon OhKrzysztof Matyjaszewski
Affiliation:a Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, 2 USA
b David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, 2 USA
c Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6
d Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
Abstract:Atom Transfer Radical Polymerization (ATRP) is an effective technique for the design and preparation of multifunctional, nanostructured materials for a variety of applications in biology and medicine. ATRP enables precise control over macromolecular structure, order, and functionality, which are important considerations for emerging biomedical designs. This article reviews recent advances in the preparation of polymer-based nanomaterials using ATRP, including polymer bioconjugates, block copolymer-based drug delivery systems, cross-linked microgels/nanogels, diagnostic and imaging platforms, tissue engineering hydrogels, and degradable polymers. It is envisioned that precise engineering at the molecular level will translate to tailored macroscopic physical properties, thus enabling control of the key elements for realized biomedical applications.
Keywords:AGET  Activator Generated by Electron Transfer (in ATRP)  RGD  arginine-glycine-aspartic acid (Arg-Gly-Asp)  ARGET  Activators Regenerated by Electron Transfer (in ATRP)  ATRC  Atom Transfer Radical Coupling  ATRP  Atom Transfer Radical Polymerization  BMDO  5  6-benzo-2-methylene-1  3-dioxepane  BSA  bovine serum albumin  ConA  Concavalin A  CRP  Controlled/living Radical Polymerization  CMC  critical micelle concentration  DEAMA  2-(diethylamino)ethyl methacrylate  DIC  differential interference contrast  DHLA  dihydrolipoic acid  Dox  doxorubicin  FITC  fluorescein isothiocyanate  FITC-Dx  fluorescein isothiocyanate-dextran  GAMA  2-glucanoamidoethyl methacrylate  GRGDS  glycine-arginine-glycine-aspartic acid-serine (Gly-Arg-Gly-Asp-Ser)  GFP  green fluorescent protein  hMSCs  human mesenchymal stem cells  HUVECs  human umbilical vascular endothelial cells  HAGM  hyaluronic acid-glycidyl methacrylate  HEA  2-hydroxyethyl acrylate  HOEtBriB  2-hydroxyethyl 2-bromoisobutyrate  LAMA  2-lactobionamidoethyl methacrylate  LCST  lower critical solution temperature  MRI  magnetic resonance imaging  MAA  methacrylic acid  MPC  2-methacryloyloxyethyl phosphorylcholine  MPDO  5-methylene-2-phenyl-1  3-dioxolan-4-one  MW  molecular weight  MWD  molecular weight distribution  MPS  mononuclear phagocyte system  NPs  nanoparticles  PBA  poly(butyl acrylate)  PCL  polycaprolactone  PM(EO2MA)  poly(di(ethylene glycol) methyl ether methacrylate)  PDMAEMA  poly(N  N-dimethylaminoethyl methacrylate)  PEO  poly(ethylene oxide)  PEODM  poly(ethylene oxide) dimethacrylate  PGA  polyglycolide  PHEMA  poly(2-hydroxyethyl methacrylate)  PLA  polylactide  PNIPAAm  poly(N-isopropylacrylamide)  POEOMA  poly(oligo(ethylene oxide) monomethyl ether methacrylate)  PP  polypropylene  PPO  poly(propylene oxide)  PQA  poly(quaternary ammonium)  pSBMA  poly(sulfobetaine methacrylate)  PNAS  poly((3-trimethoxysilyl)propyl methacrylate) and poly(N-acryloxysuccinimide)  QDs  quantum dots  QA  quaternary ammonium  RITC-Dx  rhodamine isothiocyanate-labeled dextran  RROP  radical ring-opening polymerization  ROP  ring opening polymerization  SAMs  self-assembled monolayers  Sty  styrene  SNPs  superparamagnetic iron oxide nanoparticles  TOPO  trioctyl phosphine oxide  VPGVG  valine-proline-glycine-valine-glycine (Val-Pro-Gly-Val-Gly)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号