首页 | 本学科首页   官方微博 | 高级检索  
     


Methylmercury in rivers draining cultivated watersheds
Authors:Balogh Steven J  Huang Yabing  Offerman Heather J  Meyer Michael L  Johnson D Kent
Affiliation:Metropolitan Council Environmental Services, 2400 Childs Road, St. Paul, MN 55106, USA. steve.balogh@metc.state.mn.us
Abstract:Total mercury (THg) concentrations in streams draining cultivated watersheds in Minnesota, USA are strongly correlated with total suspended sediment (TSS) concentrations, varying widely in response to precipitation-driven inputs of soil-derived suspended sediments. Methylmercury (MeHg) concentrations in these waterways have not been studied, and little is known about mercury uptake mechanisms in resident fish populations. To begin to identify factors influencing MeHg concentrations and loadings in these streams, we measured THg and MeHg concentrations in unfiltered whole water samples from the Minnesota River and two of its major tributaries, the Blue Earth and Le Sueur Rivers. Land use in the watersheds of these rivers is over 90% row-crop agriculture, and extensive artificial drainage systems deliver runoff and associated solids quickly to local streams and rivers. THg concentrations were elevated (>10 ng/l) during much of Spring 2000 and part of the summer when runoff from precipitation events increased stream discharge and carried soil materials into the streams. Reduced precipitation resulted in low flow conditions from August through October, and THg concentrations decreased to <4.0 ng/l in all three rivers. MeHg concentrations in the Le Sueur River ranged from 0.07 to 0.42 ng/l between June and December. Higher MeHg concentrations (>0.2 ng/l) were measured during summer months when THg and TSS concentrations were high after precipitation events. Elevated MeHg concentrations were also observed in late October after leaf litter inputs. Conditions on the Blue Earth River were different, with elevated MeHg concentrations (>0.5 ng/l) observed during low flow in August and September. These higher concentrations coincided with a period of enhanced microbial growth stimulated by high late-summer temperatures. A late-October increase in MeHg concentration attributed to leaf litter inputs was also observed in this river. MeHg concentration trends in the Minnesota River were similar to those in the Blue Earth River. Indicators of biological productivity (chlorophyll a, volatile suspended solids, and total Kjeldahl nitrogen) were higher in the Blue Earth and Minnesota Rivers compared to the Le Sueur River, which may signal a connection between higher biological activity and increased MeHg concentrations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号