首页 | 本学科首页   官方微博 | 高级检索  
     


Low-temperature synthesis of La0.6Sr0.4Co0.2Fe0.8O3−δ perovskite powder via asymmetric sol–gel process and catalytic auto-combustion
Authors:Lei Ge   Ran Ran   Zongping Shao   Zhong Hua Zhu  Shaomin Liu
Affiliation:aState Key Laboratory of Materials-oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing University of Technology, Nanjing 210009, PR China;bDivision of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia;cDepartment of Chemical Engineering, Curtin University of Technology, Perth, WA 6845, Australia
Abstract:La0.6Sr0.4Co0.2Fe0.8O3−δ powder was synthesized by a combined EDTA-citrate complexing process via low-temperature auto-combustion synthesis with NH4NO3 as an oxidizer and a combustion trigger. Two novel methods were explored to improve this auto-combustion technology with reduced NH4NO3 addition: the use of La0.6Sr0.4Co0.2Fe0.8O3−δ as the combustion catalyst and the application of asymmetric sol–gel process to provide the precursor with different NH4NO3 concentrations. The prepared perovskite powder was characterized by BET, SEM, XRD and iodometric titration techniques. The catalytic performance of the powder was also examined in the decomposition of peroxide hydrogen. Experimental results indicate that powders from catalytic combustion and asymmetric precursor routes have more advantages in terms of better crystallites, higher specific surface area, higher B-site valence state, improved sintering capability and better catalytic performance in peroxide hydrogen decomposition than that from the synthesis with uniform NH4NO3 distribution.
Keywords:Ceramic powder   Auto-combustion synthesis   Asymmetry   Catalysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号