首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于粒子群算法的聚类算法
引用本文:姜浩,崔荣一. 一种基于粒子群算法的聚类算法[J]. 延边大学学报(自然科学版), 2009, 35(1): 64-67
作者姓名:姜浩  崔荣一
作者单位:延边大学工学院,计算机科学与技术系,智能信息处理研究室,吉林,延吉,133002  
摘    要:提出一种基于粒子群算法的聚类算法,该算法利用粒子群算法随机搜索解空间的能力找到最优解.首先,将样本所属类号的组合作为粒子,构成种群,同时引入极小化误差平方和来指导种群进化的方向.其次,通过对全局极值的调整,搜索到全局最优值.最后,通过仿真实验的对比,验证了该算法在有效性和稳定性上要好于K-means算法.

关 键 词:粒子群  聚类  极小化误差平方和

A Method of Clustering Based on the Particle Swarm Optimization
JIANG Hao,CUI Rong-yi. A Method of Clustering Based on the Particle Swarm Optimization[J]. Journal of Yanbian University (Natural Science), 2009, 35(1): 64-67
Authors:JIANG Hao  CUI Rong-yi
Affiliation:Intelligent Information Processing Lab. , Department of Computer Science and Technology, College of Engineering, Yanbian University, Yanji 133002, China )
Abstract:A clustering method based on the particle swarm optimization is provided, using the ability of PSO algorithm which can search all of the solution space to find the optimum solution. Firstly, the combination of the cluster number of the samples was taken as particles to consist a swarm. Meanwhile, the evolution trend was used to modulate with the theory of the LMS error criterion. Secondly, according to the modulating for global best, the algorithm researched the global optimum. Finally, the simulation results show that the new algorithm of proposed algorithm is more efficient and stable than K-means algorithm.
Keywords:particle swarm optimization  clustering  LMS error criterion
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号