首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of multi-walled carbon nanotubes on mechanical,thermal and electrical properties of phenolic foam via in-situ polymerization
Affiliation:1. School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China;2. School of Environmental and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
Abstract:In this study, phenolic foam (PF)/multi-walled carbon nanotubes (MWCNTs) composites were fabricated by in-situ polymerization, and carbonized foams based on these PF foams were prepared and the electrical property was investigated. TEM results indicated excellent dispersion of MWCNTs in the phenolic resin matrix. Scanning electron microscope results indicated that PF composites exhibited smaller cell size, thicker cell wall thickness, and higher cell density, compared with pure PF. The incorporating of MWCNTs significantly improved the mechanical properties of PF. All PF composites showed a lower thermal conductivity versus pure PF. Moreover, the carbonized pure and composites PF exhibited open-cell three-dimensional skeleton carbon structure and the MWCNTs were well-dispersed on the surface of the skeletons. It is noteworthy that the introduction of MWCNTs significantly improved the electrical performances of foams and carbonized foams by construction of conductive MWCNTs network.
Keywords:A  Foams  B  Electrical properties  B  Mechanical properties  A  Nanocomposites
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号