首页 | 本学科首页   官方微博 | 高级检索  
     


Low-temperature ozone exposure technique to modulate the stoichiometry of WOx nanorods and optimize the electrochromic performance
Authors:Lin Feng  Li Chi-Ping  Chen Gang  Tenent Robert C  Wolden Colin A  Gillaspie Dane T  Dillon Anne C  Richards Ryan M  Engtrakul Chaiwat
Affiliation:National Renewable Energy Laboratory, Golden, CO 80401, USA.
Abstract:A low-temperature ozone exposure technique was employed for the post-treatment of WO(x) nanorod thin films fabricated from hot-wire chemical vapor deposition (HWCVD) and ultrasonic spray deposition (USD) techniques. The resulting films were characterized with x-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, UV-vis-NIR spectroscopy and x-ray photoelectron spectroscopy (XPS). The stoichiometry and surface crystallinity of the WO(x) thin films were subsequently modulated upon ozone exposure and thermal annealing without particle growth. The electrochromic performance was studied in a LiClO(4)-propylene carbonate electrolyte, and the results suggest that the low-temperature ozone exposure technique is superior to the traditional high-temperature thermal annealing (employed to more fully oxidize the WO(x)). The optical modulation at 670?nm was improved from 35% for the as-deposited film to 57% for the film after ozone exposure at 150?°C. The coloration efficiency was improved and the switching speed to the darkened state was significantly accelerated from 18.0?s for the as-deposited film to 11.8?s for the film after the ozone exposure. The process opens an avenue for low-temperature and cost-effective manufacturing of electrochromic films, especially on flexible polymer substrates.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号