首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of relative humidity on chloroacetanilide and dinitroaniline herbicide desorption from agricultural PM2.5 on quartz fiber filters
Authors:Yang Wenli  Holmén Britt A
Affiliation:Environmental Engineering Program, University of Connecticut, Storrs, Connecticut 06269-2037, USA.
Abstract:This study quantified the release of seven relatively polar preemergence herbicides to the gas phase from soil-generated PM2.5-loaded quartz fiber filters (QFFs) and bare QFF as a function of relative humidity (RH). A 48-hour desorption fraction, F48, was defined to evaluate the relative desorption behavior of herbicides from two families, chloroacetanilide (alachlor, butachlor, metolachlor, and propachlor) and dinitroaniline (pendimethalin, prodiamine, and trifluralin) using temperature- (8 degrees C) and humidity- (10-64% RH) controlled air at a flow rate of 4 L/min. With increasing RH, an increase in F48 by a factor of 2-8 was observed for all herbicides, except metolachlor and butachlor, which showed significantly strong sorption to both sorbents. The conjugate carbonyl oxygen and amide nitrogen in the chloroacetanilide structure enables stronger specific interactions with the sorbents, leading to lower desorption compared to the dinitroaniline herbicides. Desorption of chloroacetanilides decreased in the order propachlor > alachlor > metolachlor approximately butachlor, and desorption of dinitroanilines decreased in the order trifluralin > pendimethalin > prodiamine. These orders are consistent with the different substituents in the herbicide molecules for each family and their relative tendencies to coordinate with surface moieties as indicated by electron-donating capacity. Henry's law constant and Abraham's H-acceptor parameter were found to be useful empirical parameters for describing the F48 desorption behavior for all seven herbicides.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号