Abstract: | Column and row electrodes on two different glass substrates were orthogonally arranged in order to assemble an addressable microelectrode device for the purpose of comprehensive electrochemical detection. Amperometric signal at the individual crossing point of the column and row electrodes was detected separately on the basis of redox cycling of localized electroactive species occurring between the electrodes. The addressable microelectrode device was simple and could be easily assembled; however, it comprised as many as 10 x 10 addressable detection points on a single chip. The basic electrochemical performance of the device was investigated by using the ferricyanide/ferrocyanide redox couple. Electrochemical responses at 100 individual points could be collected within 22 s. The present device was successfully used for imaging the spots of alkaline phosphatase on the array substrate. The results indicate that the device can be applied to comprehensive and high-throughput detection and imaging of biochemical species. |