首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal conductivities of Ti-SiC and Ti-TiB2 particulate composites
Authors:S P Turner  R Taylor  F H Gordon  T W Clyne
Affiliation:(1) Manchester Materials Centre, University of Manchester/UMIST, Grosvenor Street, M1 7HS Manchester, UK;(2) Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, CB2 3QZ Cambridge, UK
Abstract:Composites of commercial-purity titanium reinforced with 10 and 20 vol % of SiC and TiB2 particulates were produced by powder blending and extrusion. Heat treatments were conducted on each of these composites. The thermal diffusivities of the composites were measured as a function of temperature using the laser flash technique. Thermal conductivities were inferred from these measurements, using a rule-of-mixtures assumption for the specific heats. It has been shown that, while an enhancement of the thermal conductivity is expected to arise from the presence of both types of reinforcement, this behaviour is in fact observed only with the Ti-TiB2 composites. The thermal conductivity of Ti-TiB2 composites is significantly greater than that of the unreinforced matrix and rises with increasing volume fraction of reinforcement. In contrast, the conductivities of the Ti-SiC composites were considerably lower than that of the unreinforced titanium and decreased with increasing volume fraction of SiC reinforcement. These results have been interpreted in terms of the thermal resistance of the reaction layers which exist between the matrix and two types of particulate reinforcements. The faster reaction kinetics between SiC and Ti gives rise to a thicker reaction layer for a given heat treatment than that between Ti and TiB2 and is also accompanied by a much larger volume change (– 4.6%). It is proposed that this volume decrease, giving rise to interfacial damage and a network of microcracks, is at least partly responsible for a high interfacial thermal resistance, reducing the conductivity of the Ti-SiC composite. These results indicate that TiB2 would be preferable to SiC as a reinforcement in Ti for situations where a high thermal conductivity would be beneficial.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号