首页 | 本学科首页   官方微博 | 高级检索  
     

带定位格架的类三角形堆芯通道超临界水传热试验研究
引用本文:王为术,黄志豪,徐维晖,马自强,朱晓静,毕勤成.带定位格架的类三角形堆芯通道超临界水传热试验研究[J].核动力工程,2021,42(5):90-95.
作者姓名:王为术  黄志豪  徐维晖  马自强  朱晓静  毕勤成
作者单位:华北水利水电大学热能工程研究中心,郑州,450011;大连理工大学能源与动力学院,辽宁大连,116024;西安交通大学动力工程多相流国家重点实验室,西安,710049
基金项目:国家自然科学基金;国家自然科学基金;河南省高等学校科技创新团队支持计划
摘    要:针对带定位格架的超临界水冷堆堆芯垂直上升类三角形子通道,开展超临界水的流动传热试验研究。反应堆堆芯类三角形子通道棒束直径为8 mm、栅距比为1.4,试验参数范围为:热流密度q=200~600 kW/m2、压力P=23~28 MPa、质量流速G=700~1300 kg/(m2·s)。分析了热流密度、压力和质量流速等热工参数对超临界水传热特性的影响。试验结果表明:定位格架处质量流速升高,流体扰动性增强,换热系数提升显著;在超临界压力下,提高压力会导致内壁温度上升,换热系数峰值降低;过高的热流密度会导致换热系数峰值降低,适当减小热流密度可提高换热性能;提高质量流速会导致内壁温度降低,换热系数峰值上升,能够显著提高换热性能。压力变化对定位格架区域传热特性影响较小,适当提升压力可提高系统安全性。 

关 键 词:超临界水  三角形子通道  传热特性  试验研究
收稿时间:2020-07-08

Experiemental Study on Heat Transfer of Supercritical Water in Triangular Channel of Reactor Core with Spacer Grid
Affiliation:1.Institute of Thermal Energy Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450011, China2.School of Energy and Power Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China3.State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049, China
Abstract:The experimental study on supercritical water flow heat transfer is carried out for the vertical upward triangular sub-channels in the supercritical water cooled reactor core with spacer grid. The fuel bundle diameter and pitch ratio of this sub-channel used are 8 mm and 1.4 respectively. The parameters adopted in the research include heat flux (q) ranging from 600 kW/m2, pressure (P) ranging from 23-28 MPa, and mass flow rate (G) ranging from 700-1,300 kg/(m2·s). This study analyzes the effect of such thermal parameters as heat flux, pressure and mass flow rate on the heat transfer characteristics of supercritical water. According to the experimental results, with the mass flow rate at the spacer grid increasing, the fluid disturbance increases and the heat transfer coefficient rises significantly; under the supercritical pressure, the inner surface temperature increases with the increasing pressure, and consequently, the peak heat transfer coefficient decreases; as the peak heat transfer coefficient reduces at an excessively high heat flux, the heat transfer performance can be improved when the heat flux is reduced properly; increasing the mass flow rate causes the drop of inner surface temperature and the increase of peak heat transfer coefficient, and thus can significantly improve the heat transfer performance; and the pressure change has little effect on the heat transfer characteristics in the vicinity of spacer grid, and however, the system safety can be improved by increasing the pressure properly. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《核动力工程》浏览原始摘要信息
点击此处可从《核动力工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号