首页 | 本学科首页   官方微博 | 高级检索  
     

融合粗细粒度信息的长答案选择神经网络模型
引用本文:孙源,王健,张益嘉,钱凌飞,林鸿飞. 融合粗细粒度信息的长答案选择神经网络模型[J]. 中文信息学报, 2021, 35(4): 100-109
作者姓名:孙源  王健  张益嘉  钱凌飞  林鸿飞
作者单位:大连理工大学 计算机科学与技术学院,辽宁 大连 116024
基金项目:国家自然科学基金(62076046,61632011,62072070)
摘    要:答案选择是问答系统中的关键技术之一,而长答案选择在社区问答系统、开放域问答系统等非实体问答系统中有着重要地位.该文提出了一个结合粗粒度(句子级别)和细粒度(单词或n元单词级)信息的模型,缓解了传统句子建模方式应用于长答案选择时不能把握住句子的全部重要信息的不足和使用比较-聚合框架处理该类问题时不能利用好序列全局信息的缺...

关 键 词:长答案选择  多粒度  深度神经网络模型
收稿时间:2019-11-21

A Neural Network for Long Answer Selection with Coarse and Fine-grained Information
SUN Yuan,WANG Jian,ZHANG Yijia,QIAN Lingfei,LIN Hongfei. A Neural Network for Long Answer Selection with Coarse and Fine-grained Information[J]. Journal of Chinese Information Processing, 2021, 35(4): 100-109
Authors:SUN Yuan  WANG Jian  ZHANG Yijia  QIAN Lingfei  LIN Hongfei
Affiliation:School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
Abstract:The long answer selection plays an important role in non-factoid question answering systems such as community question answering and open-domain question answering systems. To improve the performance of long answer selection, we propose a novel model which combines coarse (sentence-level) and fine-grained (word-level) information. Our model also alleviates the following two issues: ① not all the important information in a long sequence can be modeled by a single vector, and ② the failure to capture global information under the compare-aggregate framework. Besides, our model uses fine-grained information without extra training parameters. The experiments on InsuranceQA dataset show that the proposed model outperforms the state-of-the-art sequence models by 3.30% in accuracy.
Keywords:long answer selection    multi-granularity    deep neural networks  
点击此处可从《中文信息学报》浏览原始摘要信息
点击此处可从《中文信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号