首页 | 本学科首页   官方微博 | 高级检索  
     


Impacts of low temperature combustion and diesel post injection on the in-cylinder production of hydrogen in a lean-burn compression ignition engine
Authors:Marko Jeftić  Graham T. Reader  Ming Zheng
Affiliation:Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
Abstract:Strategies were investigated for increased in-cylinder formation of hydrogen. The use of low intake oxygen with a post injection was proposed. An intake oxygen sweep was conducted on a lean-burn compression ignition engine by adjusting of the exhaust gas recirculation rate. The results revealed that the yield of hydrogen increased exponentially when the intake oxygen was reduced to achieve low temperature combustion. Further tests showed that low temperature combustion operation consistently produced more hydrogen than high temperature combustion for similar air-to-fuel ratios.To increase the hydrogen yield further, a post injection timing sweep was carried out with low temperature combustion operation. Increased yields of hydrogen were obtained, up to 0.76% by volume, when then the post injection timing was advanced from 70 to 20° crank angle after top dead centre. At the same time, the indicated NOX emissions reduced to 0.013 g/kW·hr and the smoke emissions were 0.14 FSN. Thus, the tests established that the combination of low temperature combustion, low intake oxygen, and an early post injection produced a high yield of hydrogen with simultaneously ultra-low NOX and smoke emissions. The main drawback of this strategy was the increased formation of methane, up to 3015 ppm by volume. However, further analysis showed that the hydrogen to methane ratio actually increased under low temperature combustion operation.
Keywords:Hydrogen  Internal combustion engine  Low temperature combustion  Diesel  Post injection
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号