首页 | 本学科首页   官方微博 | 高级检索  
     


The evolution of annealing textures in 90 Pct drawn copper wire
Authors:Hyun Park  Dong Nyung Lee
Affiliation:(1) the School of Materials Science and Engineering, Seoul National University, 151-742 Seoul, Korea
Abstract:An electrolytic copper rod was drawn in 24 passes to a 90 pct reduction in area and subsequently annealed under various conditions. The global texture of the drawn wire, as measured by X-ray methods, showed a fiber texture approximated by a strong 〈111〉 and a weak 〈100〉 component. However, its microtexture, as measured by electron backscattered diffraction (EBSD), indicated that the major 〈111〉+minor 〈100〉 duplex fiber texture was dominant only in the center region, while a relatively diffuse texture developed with a somewhat higher density of orientations having a 〈11w〉//wire axis in the middle and surface regions. The inhomogeneous texture in the as-deformed wire gave rise to an inhomogeneous microstructure and texture after annealing. When annealed at 300 °C or 600 °C for 3 hours, the wire developed a duplex fiber texture consisting of major 〈100〉+minor 〈111〉 components in the center region, a strong 〈100〉 fiber texture in the middle region, and a weak texture consisting of 〈111〉 and 〈100〉 components with the 〈111〉 component being slightly stronger in the surface region. When the drawn wire was annealed at the high temperature of 700 °C, the texture at short annealing times was similar to that of the wire annealed at the lower temperatures of 300 °C and 600 °C for 3 hours, but prolonged annealing gave rise to a texture ranging from the 〈111〉 to 〈112〉 components due to abnormal grain-growth that started in the surface region. The recrystallization texture consisting of the major 〈100〉+minor 〈111〉 components was explained by the strain-energy-release maximization (SERM) model, in which the recrystallization texture is determined such that the absolute maximum principal stress direction due to dislocations in the deformed state is along the minimum elastic-modulus direction in recrystallized grains. On the other hand, the abnormal grain-growth texture was attributed to grain-boundary mobility differences between differently oriented grain.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号