首页 | 本学科首页   官方微博 | 高级检索  
     


Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm
Authors:Jinn-Tsong Tsai  Jia-Cen Fang  Jyh-Horng Chou
Affiliation:1. Department of Computer Science, National Pingtung University of Education, 4-18 Min-Sheng Road, Pingtung 900, Taiwan, ROC;2. Institute of System Information and Control, National Kaohsiung First University of Science and Technology, 1 University Road, Yenchao, Kaohsiung 824, Taiwan, ROC;3. Department of Electrical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 807, Taiwan, ROC;4. Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan, ROC
Abstract:

Purpose

The objective of this study is to optimize task scheduling and resource allocation using an improved differential evolution algorithm (IDEA) based on the proposed cost and time models on cloud computing environment.

Methods

The proposed IDEA combines the Taguchi method and a differential evolution algorithm (DEA). The DEA has a powerful global exploration capability on macro-space and uses fewer control parameters. The systematic reasoning ability of the Taguchi method is used to exploit the better individuals on micro-space to be potential offspring. Therefore, the proposed IDEA is well enhanced and balanced on exploration and exploitation. The proposed cost model includes the processing and receiving cost. In addition, the time model incorporates receiving, processing, and waiting time. The multi-objective optimization approach, which is the non-dominated sorting technique, not with normalized single-objective method, is applied to find the Pareto front of total cost and makespan.

Results

In the five-task five-resource problem, the mean coverage ratios C(IDEA, DEA) of 0.368 and C(IDEA, NSGA-II) of 0.3 are superior to the ratios C(DEA, IDEA) of 0.249 and C(NSGA-II, IDEA) of 0.288, respectively. In the ten-task ten-resource problem, the mean coverage ratios C(IDEA, DEA) of 0.506 and C(IDEA, NSGA-II) of 0.701 are superior to the ratios C(DEA, IDEA) of 0.286 and C(NSGA-II, IDEA) of 0.052, respectively. Wilcoxon matched-pairs signed-rank test confirms there is a significant difference between IDEA and the other methods. In summary, the above experimental results confirm that the IDEA outperforms both the DEA and NSGA-II in finding the better Pareto-optimal solutions.

Conclusions

In the study, the IDEA shows its effectiveness to optimize task scheduling and resource allocation compared with both the DEA and the NSGA-II. Moreover, for decision makers, the Gantt charts of task scheduling in terms of having smaller makespan, cost, and both can be selected to make their decision when conflicting objectives are present.
Keywords:Cloud computing   Differential evolution algorithm   Task scheduling   Cost and time models   Multi-objective approach
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号