首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of inspiratory flow waveforms on arterial blood gases and respiratory mechanics after open heart surgery
Authors:G Polese  P Lubli  R Poggi  A Luzzani  J Milic-Emili  A Rossi
Affiliation:Centro Fibrosi Cistica, Università di Verona ed Azienda Ospedaliera di Verona, Ospedale Maggiore, Italy.
Abstract:The clinical usefulness of inspiratory flow pattern manipulation during mechanical ventilation remains unclear. The aim of this study was to investigate the effects of different inspiratory flow waveforms, i.e. constant, sinusoidal and decelerating, on arterial blood gases and respiratory mechanics, in mechanically ventilated patients. Eight patients recovering after open heart surgery for valvular replacement and/or coronary bypass were studied. The ventilator inspiratory flow waveform was changed according to a randomized sequence, keeping constant the other variables of the ventilator settings. We measured arterial blood gases, flow, volume and pressure at the proximal (airway opening pressure (Pao)) and distal (Ptr) ends of the endotracheal tubes before and after 30 min of mechanical ventilation with each inspiratory flow waveform. We computed breathing pattern, respiratory mechanics (pressures and dynamic elastance) and inspiratory work, which was then partitioned into its elastic and resistive components. We found that: 1) arterial oxygen tension (Pa,O2) and arterial carbon dioxide tension (Pa,CO2) were not affected by changes in the inspiratory flow waveform; and 2) peak Pao and Ptr were highest with sinusoidal inspiratory flow, whilst mean Pao and Ptr and total work of breathing were least with constant inspiratory flow, mainly because of a concomitant decrease in resistive work during constant flow inflation. The effects of the inspiratory flow profile on Pao, Ptr and total inspiratory work performed by the ventilator were mainly due to the resistive properties of the endotracheal tubes. We conclude that the ventilator inspiratory flow waveform can influence patients' respiratory mechanics, but has no impact on arterial oxygen and arterial carbon dioxide tension.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号