首页 | 本学科首页   官方微博 | 高级检索  
     


Smart Control Systems for Smart Materials
Authors:Horst Meier  Alexander Czechowicz  Christoph Haberland  Sven Langbein
Affiliation:1. Ruhr-University Bochum, Universit?tsstra?e 150 Geb. IB 2/27, 44801, Bochum NRW, Germany
Abstract:Shape memory alloys (SMAs) are thermally activated smart materials. Due to their ability to change into a previously imprinted shape by the means of thermal activation, they are suitable as actuators for microsystems and, within certain limitations for macroscopic systems. Most commonly used SMAs for actuators are binary nickel-titanium alloys (NiTi). The shape memory effect relies on the martensitic phase transformation. On heating the material from the low temperature phase (martensite) the material starts to transform into the high temperature phase (austenite) at the austenite start temperature (A s). The reverse transformation starts at the martensite start temperature after passing a hysteresis cycle. To apply these materials to a wide range of industrial applications, a simple method for controlling the actuator effect is required. Today??s control concepts for shape memory actuators, in applications as well as in test stands, are time-based. This often leads to overheating after transformation into the high temperature phase which results in early fatigue. Besides, the dynamic behavior of such systems is influenced by unnecessary heating, resulting in a poor time performance. To minimize these effects, a controller system with resistance feedback is required to hold the energy input on specific keypoints. These two key points are directly before transformation (A s) and shortly before retransformation (M s). This allows triggering of fast and energy-efficient transformation cycles. Both experimental results and a mechatronical demonstrator system, exhibit the advantages of systems concerning efficiency, dynamics, and reliability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号