首页 | 本学科首页   官方微博 | 高级检索  
     


Degradation behavior of hydrophilized PLGA scaffolds prepared by melt-molding particulate-leaching method: Comparison with control hydrophobic one
Authors:Se Heang Oh  Soung Gon Kang  Jin Ho Lee
Affiliation:(1) Department of Polymer Science and Engineering, Hannam University, 133 Ojeong Dong, Daedeog Gu, Daejeon, 306-791, Korea
Abstract:Porous PLGA/PVA scaffolds as hydrophilized PLGA scaffolds for tissue engineering applications were fabricated by a novel melt-molding particulate leaching method (non-solvent method). The prepared scaffolds exhibited highly porous and open-cellular pore structures with almost same surface and interior porosities (pore size, 200–300 μ m; porosity, about 90%). The in vitro degradation behavior of the PLGA and PLGA/PVA scaffolds was compared at 37C in PBS (pH 7.4) with and without the solution change everyday to see the effect of solution pH as well as scaffold hydrophilicity on the degradation behavior. The changes in dimension, molecular weight, mechanical properties (maximum load and modulus), and morphology of the scaffolds were examined with degradation time. The degradation behavior of the PLGA and PLGA/PVA scaffolds was further investigated in vivousing a rat model (subcutaneously implantation). It was observed that both PLGA and PLGA/PVA scaffolds in decreasing pH condition (PBS no change) showed faster degradation than those in constant pH condition (PBS change everyday), owing to the enhanced intramolecular depolymerization by the increment of chain hydrophilicity caused by carboxylate groups as well as the autocatalysis of carboxylic acids accumulated in the solution by the cleavage of PLGA backbone ester bonds. The scaffolds in vivo condition also showed faster degradation than those in vitro, probably due to the aid of foreign body giant cells or enzymes. The PLGA/PVA scaffold showed slightly faster degradation than the PLGA scaffold for both in vitro and in vivo conditions. Author to whom all correspondence should be addressed.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号