首页 | 本学科首页   官方微博 | 高级检索  
     


On Resistive MHD Models with Adaptive Moving Meshes
Authors:Paul A Zegeling
Affiliation:(1) Mathematical Institute, Utrecht University, Budapestlaan 6, 3584 CD, Utrecht, The Netherlands
Abstract:In this paper we describe an adaptive moving mesh technique and its application to convection-diffusion models from magnetohydrodynamics (MHD). The method is based on a coordinate transformation between physical and computational coordinates. The transformation can be viewed as a solution of adaptive mesh partial differential equations (PDEs) which are derived from the minimization of a mesh-energy integral. For an efficient implementation we have used an approach in which the numerical solution of the physical PDE model and the adaptive PDEs are decoupled. Further, to avoid solving large nonlinear systems, an implicit-explicit method is applied for the time integration in combination with the iterative method Bi-CGSTAB. The adaptive mesh can be viewed as a 2D variant of the equidistribution principle, and it has the ability to track individual features of the physical solutions in the developing plasma flows. The results of a series of numerical experiments are presented which cover several aspects typifying resistive magnetofluid-dynamics.
Keywords:magnetohydrodynamics  coordinate transformation  equidistribution principle  monitor functions  adaptive moving mesh method  implicit-explicit time integration
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号