首页 | 本学科首页   官方微博 | 高级检索  
     


Fault detection and diagnosis in process data using one-class support vector machines
Authors:Sankar Mahadevan  Sirish L Shah
Affiliation:ECERF W7-002, Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4
Abstract:In this paper, a new approach for fault detection and diagnosis based on One-Class Support Vector Machines (1-class SVM) has been proposed. The approach is based on a non-linear distance metric measured in a feature space. Just as in principal components analysis (PCA) and dynamic principal components analysis (DPCA), appropriate distance metrics and thresholds have been developed for fault detection. Fault diagnosis is then carried out using the SVM-recursive feature elimination (SVM-RFE) feature selection method. The efficacy of this method is demonstrated by applying it on the benchmark Tennessee Eastman problem and on an industrial real-time Semiconductor etch process dataset. The algorithm has been compared with conventional techniques such as PCA and DPCA in terms of performance measures such as false alarm rates, detection latency and fault detection rates. It is shown that the proposed algorithm outperformed PCA and DPCA both in terms of detection and diagnosis of faults.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号