首页 | 本学科首页   官方微博 | 高级检索  
     


Neural network based model predictive control for a steel pickling process
Authors:Paisan Kittisupakorn  Piyanuch Thitiyasook  MA Hussain  Wachira Daosud
Affiliation:1. Department of Chemical Engineering, Chulalongkorn University, Bangkok, Thailand;2. Chemical Engineering Department, University of Malaya, 50603 Kuala Lumpur, Malaysia;3. Chemical Engineering Department, Burapha University, Chonburi 20131, Thailand
Abstract:A multi-layer feedforward neural network model based predictive control scheme is developed for a multivariable nonlinear steel pickling process in this paper. In the acid baths three variables under controlled are the hydrochloric acid concentrations. The baths exhibit the normal features of an industrial system such as nonlinear dynamics and multi-effects among variables. In the modeling, multiple input, single-output recurrent neural network subsystem models are developed using input–output data sets obtaining from mathematical model simulation. The Levenberg–Marquardt algorithm is used to train the process models. In the control (MPC) algorithm, the feedforward neural network models are used to predict the state variables over a prediction horizon within the model predictive control algorithm for searching the optimal control actions via sequential quadratic programming. The proposed algorithm is tested for control of a steel pickling process in several cases in simulation such as for set point tracking, disturbance, model mismatch and presence of noise. The results for the neural network model predictive control (NNMPC) overall show better performance in the control of the system over the conventional PI controller in all cases.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号