首页 | 本学科首页   官方微博 | 高级检索  
     


Face milling of the EN AB-43300 aluminum alloy by PVD- and CVD-coated cemented carbide inserts
Authors:C Martini  A Morri
Affiliation:aDepartment of Metals Science, Electrochemistry and Chemical Techniques (SMETEC), University of Bologna, Viale Risorgimento 4-40136 Bologna, Italy
Abstract:Two commercially available WC-6Co cemented carbide substrates (Extramet EMT100 and Pramet H10), were industrially coated with PVD TiB2 or CVD diamond. Subsequently, the coated inserts were submitted to dry sliding tests (slider on cylinder contact geometry) against the aluminum alloy EN AB-43300, for preliminary performance ranking and identification of basic wear mechanisms. The best substrate/coating combination (CVD-Diamond coated Extramet EMT100) was then tested in face milling EN AB-43300 with milling tool characterized by two different geometries (A and B), using PCD inserts as a reference for comparison. In milling tests, the influence of both insert geometry and cutting fluid feed rate were taken into account. The geometry of the tool was identified as the main parameter in influencing the tool performance. In particular, in the case of the A geometry, the relative flank wear of CVD coated tools increased abruptly during the test due coating detachment, whilst with the B geometry no catastrophic failure of the CVD coated insert was observed. The influence of Cutting Fluid Feed Rate (CFFR) also changed with tool geometry: in particular, with the B geometry, which allowed to obtain the best results with the CVD coated inserts, a decrease of CFFR from 100 to 25% did not affect significantly the wear resistance of CVD-coated inserts and allowed to maintain the roughness of the workpiece (Ra) below 0.6 μm, notwithstanding a slightly increased tendency towards the formation of Al-based transfer layers.
Keywords:PVD  TiB2  CVD  Diamond  EN AB-43300  Face milling  Dry sliding
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号