首页 | 本学科首页   官方微博 | 高级检索  
     

基于模式识别的自适应短期负荷预测系统
引用本文:彭建春,石峰等. 基于模式识别的自适应短期负荷预测系统[J]. 电力自动化设备, 2001, 21(4): 29-32
作者姓名:彭建春  石峰等
作者单位:湖南大学,;益阳市电业局,
摘    要:短期电力负荷预测是电力调度部门制定发电计划的依据,预测系的灵活适应性是实现电网经济运行的重要保证。在分析影响日电力负荷主要因素的基础上,给出了用于日荷预测的负荷模式定义,基于海明距离给出了负荷模式相拟度的计算方法,有效实现了预测负荷所需要的历史负荷模式样本的抽取。利用人工神经网络实现由历史负荷模式到预测负荷的映射。基于C++面向对象的程序设计方法开发了一套灵活的智能自适应短期预测系统。多个用户的应用结果表明,本系统具有很好的实用性和满意的预测结果。

关 键 词:短期负荷预测  模式识别  神经网络  自适应  经济调度kh
文章编号:1006-6047(2001)04-0029-04

A Pattern-Recognition-Based Adaptive System for Short Term Load Forecasting
PENG Jian chun,ZHAO Kai,SHI Feng,PI Hong qin. A Pattern-Recognition-Based Adaptive System for Short Term Load Forecasting[J]. Electric Power Automation Equipment, 2001, 21(4): 29-32
Authors:PENG Jian chun  ZHAO Kai  SHI Feng  PI Hong qin
Abstract:Short term load forecasting is the basis of power generation planning for power dispatch department.The flexibility and adaptivity of load forecasting system is the important assurance for the economic operation of power network.Based on the analysis of the major faceors that influence daily load,a load mode for short term load forecasting is defined.The similarity calculation of two load modes is given using the weighted Hanmin distance,by which the necessary historical load mode samples can be extracted efficiently.The artificial neural network is employed to map the forecasting load.A flexible and intelligent adaptive system for short term load forecasting is developed with object oriented program design method based on C++builder.Field application shows that the system is practical with satisfactory results.
Keywords:short term load forecasting  pattern recognition  neural network  adaptive  economic load dispatch
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电力自动化设备》浏览原始摘要信息
点击此处可从《电力自动化设备》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号