首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of layer thickness on structural quality of Ge epilayers grown directly on Si(001)
Authors:VA Shah  A DobbieM Myronov  DR Leadley
Affiliation:
  • Department of Physics, The University of Warwick, Coventry CV4 7AL, United Kingdom
  • Abstract:A study of Ge epilayer growth directly on a Si(001) substrate is presented, following the two temperature Ge layer method. In an attempt to minimize the overall thickness while maintaining a good quality Ge epilayer, we have investigated the effect of varying the thickness of both the low and high temperature Ge layers, grown at 400 °C and 670 °C, respectively, by reduced pressure chemical vapor deposition. We find that the surface of the low temperature (LT) seed layer has a threading dislocation density (TDD) to the order of 1011 cm− 2. On increasing the LT layer thickness from 30 nm to 150 nm this TDD decreases by a factor of 2, while its roughness doubles and degree of relaxation increases from 82% to 96%. Growth of the high temperature (HT) layer reduces the TDD level to around 108 cm− 2, which is also shown to decrease with increasing layer thickness. Both the surface roughness and degree of relaxation reach stable values for which increasing the thickness beyond about 700 nm has no effect. Finally, annealing the HT layer is shown to reduce the TDD, without affecting the degree of relaxation. However, unless a thick structure is used the surface roughness increases significantly on annealing.
    Keywords:Threading-dislocations  Growth kinetics  Silicon  Germanium  Chemical vapor deposition  Surface roughness  Relaxation  Tensile strain
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号