首页 | 本学科首页   官方微博 | 高级检索  
     


STABILIZATION OF THERMAL NEUROCONTROLLERS
Authors:GERARDO DÍAZ  MIHIR SEN  K T YANG  RODNEY L MCCLAIN
Affiliation:1. Modine Manufacturing Co. , Racine, WI, USA;2. Department of Aerospace and Mechanical Engineering , Notre Dame, IN, USA
Abstract:This work deals with the stabilization of neurocontrollers used in thermal applications. The control system can be reduced to an iterative, nonlinear map in time, and its linearization enables a stability analysis. For simple neural networks with few neurons, the eigenvalues can be analytically calculated in terms of the synaptic weights and biases. However, unless care is taken, usual training methods can drive the network to weights and biases such that the corresponding control system is unstable. A modified backpropagation training method is developed here to simultaneously minimize the target error and increase the dynamic stability of the system. Numerical computations are used to analyze the stability of realistic neural networks and their corresponding control systems. The techniques developed are used on an experimental heat-exchanger facility where the stability results are tested and validated.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号