首页 | 本学科首页   官方微博 | 高级检索  
     


LIQUEFACTION OF BEYPAZARI LIGNITE USING NiCl2-KCl-LiCl CATALYSTS. 1. DIFFERENCE IN SOLID AND MOLTEN SALT CATALYSIS
Authors:Y Yürüm  J Özkisacik  S Bekta?
Affiliation:Department of Chemistry , Hacettepe University , Beytepe, Ankara, 06532, Turkey
Abstract:ABSTRACT

Liquefaction of Beypazan lignite in tetralin using NiCl2-KCl-LiCl (14:36:50 molar percentages) as catalyst was investigated. Effects of the catalyst/lignite ratio and temperature were determined in experiments done at 275°C, 300°C and 360°C. Liquid products were separated into oils, asphaltenes and asphaltols by a solvent extraction method. Yield of liquefaction increased with temperature in all experiments, the highest yield was observed in experiments performed at the eutectic temperature of the catalyst mixture. The highest yields of oils were 20% and 30% with a catalyst/coal ratio of 0.5 at 275°C and 300°C, respectively. The activity of the catalyst increased in experiments in which the catalyst was molten. The yield of asphaltenes were not affected with increases in the catalyst/coal ratio in the experiments done at 275°C or 300°C in which the catalyst mixtures were in solid state. Asphaltene yields decreased from 25% to less than 5% with increasing values of catalyst/coal ratio and the asphaltol yields remained constant at 10% between catalyst/coal ratios of 0.25 and 1.00 and suddenly increased to 30% and 40% for catalyst/coal ratios of 1.50 and 2.00, respectively, at 360°C. The molecular weights of the oils decreased from 340 to a minimum value of 245 as the catalyst/coal ratio was increased from 0 to 1.00 in experiments done at 360°C where the catalyst was molten. As the catalyst/coal ratio was further increased from 1.00 to 2.00 the molecular weight increased to 310.It seemed that the N1Cl2-KCl-LiCl catalyst mixture in all catalyst/coal ratios was more efficient in molten phase than it was used as a solid mixture.
Keywords:chromia  hydrocracking  hydrogenation  hydrodesulfurization  iron oxide  nano-composite oxides  titania
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号