首页 | 本学科首页   官方微博 | 高级检索  
     


New method for controlled synthesis of polylactide block copolymers: organoborane/p-quinone system and reversible-deactivation radical polymerization
Authors:Dmitrii V Ludin  Sergey D Zaitsev  Alexey V Markin  Ivan D Grishin  Semen S Sologubov  Tatyana A Kovylina  Igor L Fedushkin
Abstract:We developed a new approach to obtain polylactide hybrid block copolymers with vinyl monomers (styrene, methyl methacrylate, methyl acrylate) through the realization of a reaction sequence using triethylborane and various p-quinones. The method offered includes two stages. In the first stage, a chain-transfer agent was obtained by borylation of the terminal hydroxyl groups of polylactide. The second stage was vinyl monomer radical polymerization in the presence of p-quinone accompanied by SH2-substitution at the boron atom.1,4-Naphthoquinone, 2,3-dimethyl-1,4-benzoquinone, duroquinone and 2,5-di-tert-butyl-1,4-benzoquinone were used as synthetic polymer chain growth mediators. It is shown that 1,4-naphthoquinone and 2,3-dimethyl-1,4-benzoquinone, similar in their characteristics, are effective agents providing the realization of reversible-deactivation radical polymerization. Realization of reversible-deactivation radical polymerization was proved with the analysis of the kinetics of block copolymerization, molecular weight characteristics and compositional homogeneity of block copolymers as well as its further capability to elongate the polymer chain. Synthesized block copolymers have a high thermal stability compared to the initial borylated polylactide. © 2021 Society of Industrial Chemistry.
Keywords:organoborane  p-quinone  polylactide  vinyl monomers  copolymerization  block copolymer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号