首页 | 本学科首页   官方微博 | 高级检索  
     


CATALYTIC HYDROTREATMENT OF PETROLEUM RESIDUE
Authors:Abdul-Halim A-K Mohammed  Abdullah A Abbas  Ayad B Ahmed  Abdul-Salam K Al Mayah
Affiliation:1. Petroleum Research Centre, Council of Scientific Research , P.O. Box- 10039, Jadiriyah, Baghdad, Iraq;2. Chem. Eng Dep , College of Eng. University of Baghdad
Abstract:ABSTRACT

Iraqi reduced crude (350°C+) with a sulfur content of 4.3 wt% and a total metal content (Ni+V) of 141 WPPM was n-heptane deasphalted at specified conditions. The deasphalted oil (97.2 wt% of original residue) contains 4.1 wt% of sulfur and 103 ppm of metal. The original reduced crude and deasphalted oil were hydrotreated on a commercial Ni-Mo-alumina catalyst presulfided at specified conditions in a laboratory trickle-bed reactor. The reaction temperatures varied from 300 to 420°C with the liquid hourly space velocity (LHSV) ranging from 0.37 to 2.6 h?1. Hydrogen pressure was kept constant throughout the experiments at 6.1 MPa, with a hydrogen/oil ratio of about 300 NLL?1 (normal liters of hydrogen per liter of feedstock). Analysis for sulfur, nickel, vanadium and n-pentane asphaltenes were carried out for hydrotreated products from both the original residue and the deasphalted oil. The comparison of the results obtained for the hydrotreatment of deasphalted oil and original reduced crude indicates that the removal of sulfur, nickel and vanadium was higher for the deasphalted oil than those obtained for the non-deasphalted residue over the entire range of conversion. The exclusion of extremely high molecular weight asphaltenes by n-heptane deasphalting seems to improve the access of oil into catalyst pores resulting in higher desulfurization and conversion of the lower molecular weight asphaltenes. The sulfur content of n-pentane precipitated asphaltenes remained unchaneed with LHSV for various temperature for hydrotreated products produced from both deasphalted oil and original reduced crude.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号