首页 | 本学科首页   官方微博 | 高级检索  
     


Fracture Toughness of Hybrid Carbon Fibre/Epoxy Enhanced by Graphene and Carbon Nanotubes
Authors:Wang  Zixin  Soutis  Constantinos  Gresil  Matthieu
Affiliation:1.Department of Materials, University of Manchester, Manchester, UK
;2.Aerospace Research Institute, University of Manchester, Manchester, UK
;3.i-Composites Lab, Department of Materials Science and Engineering & Department of Mechanical Aerospace and Engineering, Monash University, Clayton, Australia
;
Abstract:

Carbon-based nanoparticles have attracted considerable attention in materials science and engineering fields as they can significantly improve the electro-thermo-mechanical properties of polymer-based materials. With the need of enhancing the mechanical property through the thickness direction of a carbon fibre reinforced polymer (CFRP) system, this study investigates the effect of graphene nanoplatelets (GNP), multi-walled carbon nanotubes (MWCNT) and their hybridisations on its Mode I interlaminar fracture toughness. Various nanoplatelet sizes and weight percentages are compared to prohibit their agglomeration in epoxy which can drastically reduce the mechanical properties of CFRP. The smallest GNP size, 1 μm, dispersed in the n-methyl-2-pyrrolidone solvent leads to an advanced 146% enhancement of Mode I interlaminar fracture toughness on the CFRP system. The acetone solvent is found less surface compatible with the nanoplatelets, but provides a simple and environmentally friendly manufacturing process. The hybrid GNP/MWCNT with 1wt% content dispersed in acetone solvent shows the synergistic effect and reaches a 120% enhancement of Mode I interlaminar fracture toughness of CFRP. Additionally, the application of the thin film hot press technique on nanoplatelets enhanced CFRP demonstrates an effective and promising solution to manufacture homogeneous multi-phase composites.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号