首页 | 本学科首页   官方微博 | 高级检索  
     


Short polyethylene terephthalate fiber (PET) reinforced NBR rubber composites
Authors:H A Youssef  N A Shaltot  K F El Nemr  A A El Miligy
Affiliation:(1) National Center for Radiation Research and Technology, AEA, 29 P. O. Box, Nasr City, Cairo, Egypt
Abstract:Acrylonitrile-butadiene rubber (NBR) has been reinforced with different content of PET up to 25 phr. Vulcanization of prepared composites as will as the unreinforced ones have been induced by ionizing radiation of accelerated electron beam of varying dose up to 150 kGy. Evaluations of the vulcanized composites have been followed up through the measurement of mechanical, physical and thermal properties. Also, scanning electron microscope (SEM) was performed. Mechanical properties, namely tensile strength (TS) and hardness were found to increase with the increase of irradiation dose as well as the increase in the content of PET up to 25 phr. Also, elongation at break (ε b) was found to decrease with the increase of irradiation dose; however, the decrease in εb is not consistence with the increase in fibers loading. Young’s modulus (E) and tensile modulus at 25% elongation (E25) were found to increase with the increase of irradiation dose and fiber loading up to 20 phr. Also, the volume fraction of swollen rubber increases as irradiation dose and/or fiber content increased; it was more influenced by irradiation rather than fiber loading. Anisotropic swelling increased with irradiation and fiber loading up to 20 phr. SEM photomicrograph showed that irradiation causes adhesion between PET fiber and NBR where less pulling out and less pitting on the surface were observed. The thermal properties of the composite irradiated at 100 kGy reveal that the activation energy (E a) increases up to 10 phr fiber content. When the composite that contains 10 phr fiber irradiated at doses higher than100 kGy, Ea decreased.
Keywords:NBR  Electron beam  Short PET fibers
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号