首页 | 本学科首页   官方微博 | 高级检索  
     


Lateral uniformity in HgCdTe layers grown by molecular beam epitaxy
Authors:Brett Z Nosho  John A Roth  John E Jensen  Le Pham
Affiliation:(1) HRL Laboratories, LLC, 90265 Malibu, CA;(2) Raytheon Vision Systems, 93117 Goleta, CA
Abstract:The fabrication of high-quality focal plane arrays from HgCdTe layers grown by molecular beam epitaxy (MBE) requires a high degree of lateral uniformity in material properties such as the alloy composition, doping concentration, and defect density. While it is well known that MBE source flux nonuniformity can lead to radial compositional variation for rotating substrates, we have also found that composition can be affected significantly by lateral variations in substrate temperature during growth. In diagnostic experiments, we systematically varied the substrate temperature during MBE and quantified the dependence of HgCdTe alloy composition on substrate temperature. Based on these results, we developed a methodology to quickly and nondestructively characterize MBE-grown layers using postgrowth spatial mapping of the cutoff wavelength from the Fourier transform infrared (FTIR) transmission at 300 K, and we were able to obtain a quantitative relationship between the measured spatial variations in cutoff and the substrate temperature lateral distribution during growth. We refined this methodology by more directly inferring the substrate temperature distribution from secondary ion mass spectroscopy (SIMS) measurements of the As concentration across a wafer, using the fact that the As incorporation rate in MBE-grown p-type layers is highly sensitive to substrate temperature. Combining this multiple-point SIMS analysis with FTIR spatial mapping, we demonstrate how the relative contributions from flux nonuniformity and temperature variations on the lateral composition uniformity can be separated. This capability to accurately map the lateral variations in the substrate temperature has been valuable in optimizing the mounting and bonding of large substrates for MBE growth, and can also be valuable for other aspects of MBE process development.
Keywords:Molecular beam epitaxy (MBE)  HgCdTe  infrared  arsenic doping
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号