首页 | 本学科首页   官方微博 | 高级检索  
     


Model‐based reconstruction for T1 mapping using single‐shot inversion‐recovery radial FLASH
Authors:Volkert Roeloffs  Xiaoqing Wang  Tilman J Sumpf  Markus Untenberger  Dirk Voit  Jens Frahm
Affiliation:Biomedizinische NMR Forschungs, GmbH am Max‐Planck‐Institut für biophysikalische Chemie, 37077 Goettingen, Germany
Abstract:Quantitative parameter mapping in MRI is typically performed as a two‐step procedure where serial imaging is followed by pixelwise model fitting. In contrast, model‐based reconstructions directly reconstruct parameter maps from raw data without explicit image reconstruction. Here, we propose a method that determines T1 maps directly from multi‐channel raw data as obtained by a single‐shot inversion‐recovery radial FLASH acquisition with a Golden Angle view order. Joint reconstruction of a T1, spin‐density and flip‐angle map is formulated as a nonlinear inverse problem and solved by the iteratively regularized Gauss‐Newton method. Coil sensitivity profiles are determined from the same data in a preparatory step of the reconstruction. Validations included numerical simulations, in vitro MRI studies of an experimental T1 phantom, and in vivo studies of brain and abdomen of healthy subjects at a field strength of 3 T. The results obtained for a numerical and experimental phantom demonstrated excellent accuracy and precision of model‐based T1 mapping. In vivo studies allowed for high‐resolution T1 mapping of human brain (0.5–0.75 mm in‐plane, 4 mm section thickness) and liver (1.0 mm, 5 mm section) within 3.6–5 s. In conclusion, the proposed method for model‐based T1 mapping may become an alternative to two‐step techniques, which rely on model fitting after serial image reconstruction. More extensive clinical trials now require accelerated computation and online implementation of the algorithm. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 254–263, 2016
Keywords:T1 mapping  model‐based reconstruction  radial FLASH  iterative reconstruction  relaxometry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号