首页 | 本学科首页   官方微博 | 高级检索  
     


Investigation of the low-cycle fatigue mechanism for micron-scale monocrystalline silicon films
Authors:E.K. Baumert  P.-O. Theillet  O.N. Pierron
Affiliation:G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332-0405, USA
Abstract:This study investigated the cyclic and static fatigue properties of 10 μm thick, deep reactive ion etched, monocrystalline silicon films. Stress–life fatigue curves and fatigue degradation rates vs. stress curves were generated at both 4 and 40 kHz, at 30 °C, 50% relative humidity (RH). A significant frequency effect was observed, with shorter fatigue lives and faster damage accumulation rates at 4 kHz. Static fatigue was also observed with shorter static lifetimes at 80 °C, 90% RH than at 30 °C, 50% RH. Fracture surface evaluation did not reveal any major difference between cyclically and statically fatigued devices. These experimental results confirm that the fatigue of micron-scale silicon is not purely mechanical. The study also proposes a fatigue scenario based on time-dependent subcritical crack growth to account for the low-cycle fatigue regime.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号