首页 | 本学科首页   官方微博 | 高级检索  
     


Nanoindentation-induced phase transformation in (1 1 0)-oriented Si single-crystals
Authors:Sheng-Rui Jian  Guo-Ju Chen  Jenh-Yih Juang
Affiliation:1. Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan;2. Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan
Abstract:Pressure-induced plastic deformation and phase transformations manifested as the discontinuities displayed in the loading and unloading segments of the load–displacement curves were investigated by performing the cyclic nanoindentation tests on the (1 1 0)-oriented Si single-crystal with a Berkovich diamond indenter. The resultant phases after indentation were examined by using the cross-sectional transmission electron microscopy (XTEM) technique. The behaviors of the discontinuities displayed on the loading and re-loading segments of the load–displacement curves are found to closely correlate to the formation of Si-II metallic phase, while those exhibiting on the unloading segments are relating to the formation of metastable phases of Si-III, Si-XII, and amorphous silicon as identified by TEM selected area diffraction (SAD) analyses. Results revealed that the primary indentation-induced deformation mechanism in Si is intimately depending on the detailed stress distributions, especially the reversible Si-II ? Si-XII/Si-III phase transformations might have further complicated the resultant phase distribution. In addition to the frequently observed stress-induced phase transformations and/or crack formations, evidence of dislocation slip bands was also observed in tests of Berkovich nanoindentation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号