首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于ReliefF评估和互补系数的特征选择算法
引用本文:苏映雪,付耀文,黎湘. 一种基于ReliefF评估和互补系数的特征选择算法[J]. 电光与控制, 2007, 14(3): 12-15,18
作者姓名:苏映雪  付耀文  黎湘
作者单位:国防科技大学电子科学与工程学院ATR实验室,长沙410073;国防科技大学电子科学与工程学院ATR实验室,长沙410073;国防科技大学电子科学与工程学院ATR实验室,长沙410073
基金项目:国家重点基础研究发展计划(973计划)
摘    要:Filter特征选择算法具有通用性强、算法复杂度低的特点,但对某一个具体的分类器选择的特征子集也许并不是最优的;Wrapper方法与其相反,对特定的分类器可以找到最优的特征子集,但算法复杂度很高.研究一种Filter与Wrapper相结合的混合型算法.首先从特征对样本分类效果的角度提出互补系数的概念,然后基于ReliefF评估和互补系数,提出ReCom算法.实验证明,由ReCom算法得到的特征子集与ReliefF算法得到的特征子集相比具有更好的性能,并且与传统Wrapper方法相比,该算法大大降低了时间复杂度.

关 键 词:特征选择  ReliefF  互补系数
文章编号:1671-637X(2007)03-0012-04
修稿时间:2006-05-09

A feature selection method based on ReliefF evaluation and complementary coefficient
SU Ying-xue,FU Yao-wen,LI Xiang. A feature selection method based on ReliefF evaluation and complementary coefficient[J]. Electronics Optics & Control, 2007, 14(3): 12-15,18
Authors:SU Ying-xue  FU Yao-wen  LI Xiang
Affiliation:ATR lab,School of Electronic Science and Technology, NUDT, Changsha 410073, China
Abstract:Filter feature selection algorithm has the advantages of low complexity and being adaptive to different databases, the drawback is that the selected feature subset may not be the best for a given classifier. On the contrary, Wrapper method can select the best feature subset for a given classifier, but has high complexity. In this paper, a method combining Filter with Wrapper is stuided. First, complementary coefficient is presented to measure the correlation between features. Then, ReCom algorithm is presented based on ReliefF evaluation and complementary coefficient. Experimental results show that ReCom algorithm has better performance than ReliefF algorithm, and it has lower time complexity than general Wrapper algorithms.
Keywords:feature selection    ReliefF   complementary coefficient
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号