首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of interfacial properties and microfailure mechanisms in single fiber‐reinforced epoxy composites at low temperature
Authors:Joung‐Man Park  Zuo‐Jia Wang  Dong‐Jun Kwon  Ga‐Young Gu  Moon‐Kwang Um  K Lawrence DeVries
Abstract:In this preliminary study, micromechanical techniques were used to compare the interfacial properties of both carbon and glass fiber composites with two structurally different epoxy matrices (YD‐114 and YDF‐175) at ambient and relatively low temperatures (25°C and ?10°C). Tensile modulus of elasticity for both epoxies was higher at lower temperature. Although both fibers exhibited more bimodality at lower temperature than at ambient temperature, glass fiber composites exhibited a statistically greater improvement in tensile strength. This may be attributed to differences in inherent flaws and rigidity. A decrement in stress was observed for YDF‐175 epoxy composites under cyclic loadings at both temperatures, which was attributed to lower interfacial shear strength (IFSS). In contrast to the IFSS of conventional YD‐114 epoxy composites, the IFSS of both the carbon and glass fibers/YDF‐175 epoxy composites studied was higher at the lower temperature. The microfailure pattern observed in microdroplet pullout tests was consistent with the other IFSS results. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号