首页 | 本学科首页   官方微博 | 高级检索  
     

一种融合模块2DPCA与PCA的人脸识别方法
引用本文:黄海波,全海燕,谢鹏. 一种融合模块2DPCA与PCA的人脸识别方法[J]. 郑州轻工业学院学报(自然科学版), 2013, 0(6): 81-85
作者姓名:黄海波  全海燕  谢鹏
作者单位:昆明理工大学信息工程与自动化学院,云南昆明650500
基金项目:国家自然科学基金项目(D0405);云南省自然科学基金项目(2009ZC048M)
摘    要:针对主成分分析(PCA)求解高阶矩阵计算量很大和模块二维主成分分析(M2DPCA)特征数量仍然较大且有一定的相关性的问题,提出了融合模块2DPCA与PCA的方法进行人脸识别.该方法先通过M2DPCA对子图像进行特征提取,然后把每个图像中的子图像按分块的顺序重新组成新的矩阵,再对新的矩阵进行PCA.在ORL人脸库中实验,结果表明,该算法在一定程度上去除了特征参数间的相关性并大大减少了特征维数.

关 键 词:模块二维主成分分析  主成分分析  特征提取  人脸识别

A method for face recognition by fusing modular 2DPCA with PCA
HUANG Hai'bo,QUAN Hai-yan,XIE Peng. A method for face recognition by fusing modular 2DPCA with PCA[J]. Journal of Zhengzhou Institute of Light Industry(Natural Science), 2013, 0(6): 81-85
Authors:HUANG Hai'bo  QUAN Hai-yan  XIE Peng
Affiliation:( Institute of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500, China)
Abstract:Aiming at the problem that principal component analysis (PCA) leads to a large amount of cal- culation in solving high rank-matrix and the modular two-dimensional principle component analysis (2DPCA) is still large in feature calculation and a certain correlation still exists in feature extraction,a method fusing the Modular 2DPCA with PCA was put forward. The method extracted feature from sub-image using M2DPCA, and re-formed a new matrix according to the order of sub-images of each image, then PCA was carried out on the new matrix. The experimental results in ORL human face database showed that the correlation among feature parameters was removed to a certain extent and it also greatly reduced the dimen- sion of features.
Keywords:modular two-dimensional principle component analysis(M2DPCA)  principal component anal-ysis (PCA)  feature extraction  face recognition
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号