首页 | 本学科首页   官方微博 | 高级检索  
     


A comparison of three insect-inspired locomotion controllers
Authors:Cynthia Ferrell  
Affiliation:

Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 545 Technology Square, Room 741, Cambridge, MA 02139, USA

Abstract:This paper compares three insect inspired controllers which were implemented on an autonomous hexapod robot. There is a growing interest in using insect locomotion schemes to control walking robots. Researchers' interest in insect-based controllers ranges from understanding the biological basis of locomotion control in insects to building real-time walking machines which require relatively little computational power. Several models for insect locomotion exist, and robotics researchers tend to adopt one approach and experiment with it.

In contrast, this paper offers a comparison of three insect inspired controllers — all of which were implemented and tested on the same autonomous hexapod robot. Some of the controllers used reflex-based mechanisms whereas others used pattern-based mechanisms. Reflexive controllers exploit sensory stimulus and response reactions to produce leg motion and gait coordination. In contrast, pattern-based controllers depend more upon pre-programmed patterns of behavior which may be influenced by external events. Typically, these pre-programmed patterns of behavior are implemented using central pattern generators (CPGs).

In this work, we compare gait coordination performance of three controllers on flat terrain. We extend the comparison to include leg loading considerations, disabled leg compensation, and externally applied leg perturbations. We discuss the differences between controllers with respect to inconsistent leg retraction velocities, leg design issues, sensing requirements, and computational issues. The robot performed quite differently under varying experimental conditions depending upon which controller was used. We found that controller performance was the most sensitive to robot design parameters. For our case, we had the most success with pattern-based mechanisms given the leg design of our robot and its limitations in controlling the retraction velocity of its legs. The pattern-based mechanisms allowed the robot to remain stable over a variety of gaits while the robot was subjected to loading the legs, disabling a leg, and physically disturbing the legs. The reflexive mechanisms were less successful at maintaining stability when the robot's legs were increasingly disrupted.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号