首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal oxidative cutting of multi-walled carbon nanotubes
Authors:Michael Q Tran  Alexander Alfrey  Alexander Bismarck  Milo SP Shaffer
Affiliation:a Department of Chemical Engineering, Polymer & Composite Engineering (PaCE) Group, Imperial College London, London SW7 2AZ, UK
b UROP Student on placement from University of Delaware, Wilmington, DE 19716, USA
c Department of Chemistry, Imperial College London, London SW7 2AZ, UK
Abstract:Commercially available, multi-walled carbon nanotubes grown by CVD are usually inherently entangled, but can be separated by cutting. However, most cutting methods both cause damage to the nanotubes and involve a lengthy work-up procedure. The use of abrupt, repeated exposure to oxidising conditions in air proved to be an efficient (68% yield) means of producing material with open ends, moderate functionalisation, and enhanced solvent dispersibility; the average lengths were reduced from over 5 μm to approximately 650 nm. Additionally, the character of the surface oxides can be tuned to have either an acidic or basic character by using a simple thermal treatment. These approaches could be deliberately integrated into conventional CVD processes, but also have implications for the products of standard nanotube syntheses. Raman spectroscopy and electron microscopy were used to study the impact of cutting on the intrinsic graphitic structure and the length distribution. X-ray photoelectron spectroscopy was used to determine the extent of functionalisation. The cut carbon nanotubes were dispersed in dimethylformamide (DMF), a Lewis basic solvent, and chloroform, a Lewis acidic solvent, using mild sonication. Through the use of an experimentally determined extinction coefficient (ε = 35.10 ml mg−1 cm−1), the relative dispersibility of the cut and functionalised carbon nanotubes in DMF and chloroform was determined.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号