首页 | 本学科首页   官方微博 | 高级检索  
     


ANALYSIS OF THE FOULING MECHANISM IN MICROFILTRATION OF ORANGE JUICE
Authors:S TODISCO  L PEÑA  E DRIOLI  P TALLARICO
Affiliation:University of Calabria 87030 Arcavacata de Rende, (cs) ITALY
Abstract:The purpose of this work is theoretical and experimental evaluation of fouling effects on flux performance in clarification of freshly squeezed orange juice by cross-flow microfiltration. To identify optimum operating conditions to minimize fouling effects, juice was microfiltered on a laboratory scale plant varying axial velocity and transmembrane pressure difference. The observed flux decay was modeled using a modified form of the differential equation used to describe classical dead-end filtration processes. The mechanism of fouling during cross-flow microfiltration was identified by estimation of the model parameters according to a nonlinear regression optimization procedure. Analysis of the results revealed that the separation process is controlled by a cake filtration fouling mechanism as the juice is fed at relatively low velocity (i.e., Re = 5000) and the system is operated at low transmembrane pressure difference. In these operating conditions the permeate flux decays within the first 20–30 min to gradually achieve a limit value. At higher Reynolds number (Re = 15,000), an increase in applied transmembrane pressure (i.e., from 0.3 to 1 bar) allows the limit permeate flux to increase by a factor of about 4. In these conditions the filtration process is controlled by a complete pore blocking fouling mechanism, and the permeate flux becomes approximately invariant with respect to time, and a negligible decay may be observed. Evaluation of specific energy consumption involved in the filtration process is reported.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号