首页 | 本学科首页   官方微博 | 高级检索  
     

管道裂纹远场涡流检测正演模型设计
引用本文:敖永才,师奕兵,王志刚,李西风. 管道裂纹远场涡流检测正演模型设计[J]. 测控技术, 2012, 31(2): 1-5
作者姓名:敖永才  师奕兵  王志刚  李西风
作者单位:电子科技大学自动化工程学院,四川成都,611731
摘    要:管道远场涡流裂纹缺陷检测的本质是电磁场反演问题,由于先验约束条件的不足,缺陷尺寸的定量检测成为一个无定解的不适定问题。提出了一种基于BP神经网络学习算法的管道远场涡流检测正演模型的设计方法,通过对轴对称缺陷管道模型的仿真研究,提取出与缺陷尺寸显著相关的关键磁场特征量,实现了从管道裂纹缺陷尺寸空间到磁场信号特征空间的非线性定量映射。经测试,正演模型对远场涡流特征信号具有良好的逼近精度和推广能力,可为管道轴对称裂纹缺陷的定量反演评估提供有效的先验知识和约束条件。

关 键 词:裂纹  远场涡流  正演模型  定量反演

Design on Forward Modeling of RFEC Inspection for Cracks
AO Yong-cai , SHI Yi-bing , WANG Zhi-gang , LI Xi-feng. Design on Forward Modeling of RFEC Inspection for Cracks[J]. Measurement & Control Technology, 2012, 31(2): 1-5
Authors:AO Yong-cai    SHI Yi-bing    WANG Zhi-gang    LI Xi-feng
Affiliation:(School of Automation Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China)
Abstract:Being an inverse problem of electromagnetic fields,the quantitative inspection of pipeline cracks in remote field eddy current inspection (RFECI) becomes an ill-posed problem for the lack of the prior constraints.The significant correlationship between the cracks and the features of the magnetic signals through the researches on the axisymmetric defects of the pipeline is demonstrated.A forward modeling,which can quantitatively map the pipeline defects to the features of the magnetic signals,based on back-propagation neural network (BPNN) is proposed.The high approximation accuracy and the good generalization ability of the forward modeling mean the effective prior knowledge and constraints for the quantitative inverse of the pipeline defects.
Keywords:cracks  remote field eddy current  forward modeling  quantitative inverse
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测控技术》浏览原始摘要信息
点击此处可从《测控技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号